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The problem of Rayleigh-Taylor instability is reexamined within the framework of 
incompressible, inviscid and irrotational fluid flow in a bounded three-dimensional 
domain. A relation proposed by Pimbley (1976) between the slope and the amplitude 
of the interface at the rigid boundary is adopted as the interface boundary condition. 
Steady solutions are derived in approximate form by using bifurcation theory. It is 
shown that under the conditions given some of the steady solutions exhibit the 
features of the well-known bubbles-and-spikes configuration and can be stable to 
infinitesimal disturbances. 

1. Introduction 
Rayleigh-Taylor instability refers to the instability of the accelerated interface 

between two fluids of different densities, which occurs when the acceleration is 
directed from the lighter fluid to the heavier fluid. Since it was investigated first by 
Rayleigh (1900) and later by Taylor (1950), this instability problem has been the 
subject of numerous studies (e.g. Lewis 1950; Bellman & Pennington 1954; Emmons, 
Chang & Watson 1960; Miles & Dienes 1966; Daly 1969; Pimbley 1976; Dienes 1978; 
Baker, Meiron & Orszag 1980; Baker & Freeman 1981 ; Menikoff & Zemach 1983). 

Most of these studies are concerned with the evolution of initially sinusoidal 
two-dimensional disturbances of a plane interface. The amplification of such disturb- 
ances is experimentally discussed in terms of three stages (Lewis 1950; Emmons et al. 
1960) : 

(i) an initial stage during which the amplitudes of the disturbances increase 
exponentially ; 

(ii) a transition stage during which the sinusoidal form of the disturbances is lost; 
the interface changes to the shape of rising broad rounded-ended columns (bubbles) 
of the lighter fluid and falling narrow columns (spikes) of the heavier fluid; 

(iii) a final asymptotic stage during which the round-ended columns of the lighter 
fluid rise through the heavier fluid at  a constant velocity ; the shape of the interface 
remains unchanged. 

The phenomena associated with stage (i) are well predicted by linear theories 
(Bellman & Pennington 1954; Miles & Dienes 1966), whereas the nonlinear phenomena 
associated with stages (ii) and (iii) are incompletely understood. On the one hand, 
the change of growth rate from exponential in time to algebraic in time implies the 
existence of some nonlinear bound on the growth rate. Indeed, this is borne out by 
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F. 1 .  Schematic diagram of the physical system under consic-ration. 

computer simulations (Daly 1969; Baker et al. 1980; Menikoff & Zemach 1983). 
Recent theoretical studies (Dienes 1978; Baker & Freeman 1981) have also found 
some success in estimating the nonlinear bound. 

On the other hand, the development of the interface during stage (iii) suggests 
the existence of some new stable modes of equilibrium. However, this aspect of the 
problem of nonlinear Rayleigh-Taylor instability has scarcely been discussed. The 
question thus arises: are there any equilibrium states of the interface that are stable 
to infinitesimal disturbances ? To answer this question we must consider the 
instability problem in the light of physical systems. Though the experiments were 
carried out with finite apparatus, most previous theoretical work has considered 
fluids of infinite lateral extent, thereby obviating the boundary conditions that 
govern the motion of fluid where the interface meets the rigid boundary. This 
naturally leads to another question : does the presence of a rigid boundary have any 
stabilizing effects on the interface 2 

The paper of Pimbley (1976) shed some light on these two questions. The 
two-dimensional problem of Rayleigh-Taylor instability together with a proposed 
interface boundary condition was studied as an evolution problem in nonlinear 
partial differential equations in the large. The existence and nature of the steady 
solutions that bifurcate from the given one, i.e. the quiescent plane interface, and 
the stability of the bifurcating solutions were examined in a rigorous manner. It was 
found that some of the new steady solutions do have an appearance suggestive of 
the shape of the interface during stage (iii), but none of them is stable to infinitesimal 
disturbances. 

In  the present paper we adopt Pimbley’s approach to study the three-dimensional 
problem of Rayleigh-Taylor instability. Section 2 contains a general description of 
the problem, which is formulated within the framework of incompressible, inviscid 
and irrotational fluid flow in a bounded three-dimensional domain. In  $3  nontrivial 
steady solutions are derived in approximate form through a rather straightforward 
application of bifurcation theory. Section 4 contains a numerical example and some 
concluding remarks. 
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2. Formulation 
Consider a physical system, as depicted in figure 1, in which a heavier fluid of depth 

Cn is confined by two lighter fluids of infinite depth and the walls of a vertical 
rectangular vessel of length An and width Bx. We suppose that the fluids are 
motionless and that the interfaces are horizontal and flat. At time t = 0 an impulsive 
pressure change is applied to the lower interface. We wish to study the subsequent 
motions of the lower interface and the heavier fluid under the following assumptions: 

(a)  the densities of the lighter fluids are negligibly small ; 
(b )  there is no mass transfer at  the fluid interfaces; 
(c) the heavier fluid is inviscid and incompressible; 
( d )  the flow of the heavier fluid is irrotational. 
We choose a Cartesian coordinate system that has its origin fixed at the centre of 

the upper interface and is oriented so that the x-axis and the y-axis are parallel to 
the walls of the vessel and the unit vector associated with the z-axis is parallel to 
and of the same sense as the direction of the apparent acceleration. The upper and 
lower interfaces can then be described respectively by 

S,(x, y ,  2 ,  t )  = z = 0, 

X , ( x , y , z , t )  = Z+Cn-T(x, y , t )  = 0. 

(1) 

( 2 )  

Equation (1) represents a flat upper interface and is in accordance with the 
well-known experimental observations that the interface remains flat when the 
acceleration is directed from the heavier fluid toward the lighter fluid (Lewis 1950). 

Following the steps used by Emmons et al. (1960), we arrive at  the following set 
of equation and conditions : 

continuity equation 

$ x x + $ y y + $ z z = O  ( - + A x < x < + A K , - + B ~ < Y < + B x , S ~ < O , S , > O ) ;  ( 3 )  

boundary conditions 

initial condition 

~ ( x ,  y, 0 )  is prescribed (-$Ax < x < $An, -+Bn < y < +Bx), (7) 

where a subscript indicates differentiation with respect to that variable, $ is the 
velocity potential, g is the apparent acceleration, p is the density of the heavier fluid, 
c is the surface tension between the heavier fluid and the lower lighter fluid, and H 
is the mean curvature given by (Korn & Korn 1961) 

For fluids of infinite extent the interface conditions (4)-(6) together with the 
continuity equation (3) are sufficient to solve the problem. Inasmuch as we are 
concerned with the motions of the fluid and the interface in a finite domain, we need 
to specify additional boundary conditions. 
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From potential theory we have 

$z = 0 (X = ++An, s, < o,s, > O),  

$y = 0 (y = &+Bn, s, < 0, s, > 0). 

(9) 

(10) 

The appropriate boundary conditions that govern the motion of fluid in the vicinity 
of a moving contact line are as yet unknown (Dussan V. 1983). On the other hand, 
the steady problem entails the Helmholtz equation for q ,  as will be seen in 33. It is 
well established (Morse & Feshbach 1953, p. 706) that  the association of Dirichlet 
or Neumann boundary conditions with an elliptic equation leads to a unique solution. 
Hence i t  is not unreasonable to  specify the value of q ,  the amplitude, a t  the wall or 
the value of the normal gradient of q ,  the slope of the interface, there. Pimbley (1976) 
remarked that ' the question is less what boundary conditions would be given by the 
local physics at the wall, and more what boundary conditions would produce a 
physically reasonable and observed solution away from the wall'. In  the same spirit, 
we assume that the slope of the interface at the wall depends only on the amplitude 
of the interface there. Let a+, a_, B+ , P- be functions of q ; we thus have 

qz = a+(q) (X = +An, -+Bn < y < +&), 

'lz = u-(q)  (z = -$An, -+Bn < y < + B E ) ,  

qy = P+(q)  (y = $Bn, - & 4 ~  < x < +An), 

qy = p-(q) (y = -!jBn, -:An < x < +An). 

( 1 1 )  

(12) 

(13) 

(14) 

"+(q(aAX,Y,t))  = -"-(q(--&4n>yjt)) ifq(+An,y,t) = q(-iAn,y,t), (15) 

Given thac the boundary is symmetric, we impose the following conditions: 

P+(q(z, +Bn, t ) )  = - P - ( q ( x ,  -+Bn, t ) )  if q ( ~ ,  $Bn, t )  = q(z, -+Bn, t ) .  (16) 

Without loss of generality, we suppose 

a+(q) = f ( q )  (x =+An, -$Bn < y < pn), (17) 

P+(q)  =f(q) (y = iBn, -!jAn < z < +An), (18) 

where f is a yet-to-be-specified function of q .  Our hypothesis that  the quiescent 
interface is flat impliesf(0) = 0. At the same time, we expect that the slope of the 
interface a t  the wall approaches a constant as the amplitude becomes large and that 
the value of the constant depends on some physical constants dictated by the local 
physics at the wall. 

Thus we can rewrite the boundary conditions (11)-(14) as 

qz =f(q) (x = i A R ,  -+Bn < y < +Bn), (19) 

qz = -f(q) (x = -$An, - p n  < y < @n), (20) 

qy =f(q) (y = $Bn, -+An < z < +An), (21) 

qy = - f (q )  (y = -+Bn, -+An < x < iAn),  (22 1 

All) = 0 (7 = 01, (23a) 

f ( q ) + - F  (q+*co)3  (23 b)  

O > f ( S ) '  -F  (7 * O ) .  (23c) 

where the function f satisfies 
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= 0, f can Moreover, we assume that f '(0) = 0 and that in the neighbourhood of 
be represented by a MacLaurin series : 

00 

f ( T )  = x f i r i .  
i - 2  

Introducing into (3)-(7), (9)-(10) and (19)-(22) scaled variables defined by 

we obtain the following: 
continuity equation 

L$+$,,=O ( - ~ n < x < < n , - ~ n < y < ~ n , S 1 < 0 , S 2 > O ) ;  (26) 

(27 ) 

(28) 

(29) 

(30) 

boundary conditions 

(bX = 0 (x = &~n1S1 < 0,S2 > O ) ,  

$y = 0 (y = &in1S1 < 0,S2 > O ) ,  

$= = 0 (-in < x < $, -in < y < +n,S1 = O ) ,  

- ~ ~ - a ~ ~ , ~ ~ $ , - b ~ v ~ $ ~ + $ ~  = 0 (-in < x <in, -in < y < in1Sz = 0) ,  

1 
" b  7 = --f(T) (y = -in, -in < x < in); 

initial condition 
(35) 

~ ( x ,  y, 0) is prescribed (-in < x < in, -in < y < in). (36) 

Asterisks have been suppressed for convenience, 

and L is a second-order linear operator: 
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To recapitulate, we consider the motions of the heavier fluid and the lower 
interface that are governed by the system of equations (26)-(36). 

3. Steady solutions 
The steady problem is obtained by setting qt = 0 and q5t = 0 in (30) and (31). It 

is obvious that the initial state, = 0 and 9 = const, satisfies the resulting equations. 
It should be noted that T,I = 0 would not be a steady solution were the interface 
boundary functionf(7) in the boundary conditions (32)-(35) chosen identically to be 
the fixed contact angle between tht: heavier fluid and the rigid boundary. This flat 
quiescent interface will hereinafter be referred to  as the basic solution. Our goal in 
this section is to seek other steady solutions that bifurcate from the basic solution. 

We begin by showing that under steady condition q5 is constant in the bounded 
flow region. From Green's theorem (Morse & Feshbach 1953, p. 803), we have 

r r 

in which the volume R and the bounding surfaces aR,, aR,, aR, and aR, are defined 
as follows : 

(40a) 

( 4 0 b )  

(404 

(40 4 
( 4 0 e )  

A 

A 

A 

A 

A 

R = = {(x, y, Z )  I -+x < x < in ,  -in < y < in, S,  < 0, S,  > 0}, 

aR, = ((2, y, Z )  I II: = +in ,  -in < y < fn, S,  < 0, S,  > 0}, 

aR, = ((2, y, Z )  I y = +in ,  -$ < x < fn, S ,  < 0, S ,  > 0}, 

aR, = ((2, y, Z) I -+x < .X < in ,  -+x < y < fn, S ,  = 0}, 

aR, = {(z, y, Z )  I -+x < x < S, = 0). -$ < y < 

The terms on the right-hand side of (39) vanish by virtue of (26)-(30). Hence V# 
vanishes, or q5 = const, identically in R. 

With q5 = const the steady problem reduces to a nonlinear problem in 7 only: 
2 2 8  Lr + AT( 1 + a2r: + b T y ) Z  + ( w r ;  r z z  - 2% r y  r z y  + 7: ryy) = 0 

(-an < z < in, -in < y < in), (41a) 

(41b) 

(41c) 

(41 4 

(41 e )  

It can be shown (Stakgold 1971) that  the bifurcation point>s of the nonlinear problem 
(41a-e) are to be found among the eigenvalues of the linearized (about the basic 
solution) problem : 

(42a) 

(4% c )  

(424 e )  

1 
'lz = --f(r) 

r y  = g f ( r )  

(z = in, -in < y < in) ,  

qz = ---f(q) (z = -in, -in < y < in), 

(Y = in ,  -3 < 5 < $4, 

qy = --f(q) (y = -in, -in < z < in). 

1 
a 

1 

1 
b 

Ly+hq = 0 (--in < z < in, -in < y < in), 

qz = 0 (x = +in, -in < y < in), 

?/$/ = 0 (y = +in, -fX < z < fX), 
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and that if an eigenvalue is simple, one and only one non-trivial solution bifurcates 
from the basic solution at that point. 

The eigenvalues A,, and the corresponding eigenfunctions "lmn for the linearized 
problem (42a-e), are, for m, n = 1 ,  2 , .  . . , readily found to be 

A,, = (am),+ (bn), (43) 

and 

cosmx cosny (m, n even), / 
cosmx sinny 

sinmx cosny 

sin mx sin ny 

(m even, n odd), 

(m odd, n even), 

(m, n odd). 

"lmn = 

If the aspect ratio bla is not an integer then the eigenvalues are simple. Otherwise, 
the eigenvalues can be simple or multiple depending on the values of m and n. For 
example, if a = b then 

A,, = 2a is a simple eigenvalue, 

A,, = A,, = 5a is an eigenvalue of multiplicity two, 

A,, = A,, = A,, = 50a is an eigenvalue of multiplicity three, 

A,, = A,, = A,, = A,, = 65a is an eigenvalue of multiplicity four. 

It has been suggested (Bauer, Keller & Reiss 1975) that secondary bifurcation can 
arise in the neighbourhood of multiple eigenvalues provided that a splitting parameter 
exists. As the parameters a and b are intrinsic to the current geometry, the case in 
which the eigenvalues are multiple appears to be a plausible candidate for further 
study on secondary bifurcation, which can be a research subject in its own right. In 
what follows we confine ourselves to the case of simple eigenvalues. 

Now that we know that the basic solution does branch out into non-trivial 
solutions and where the bifurcation points are, we can construct the bifurcation 
solution 5j near a bifurcation point A,, by means of nonlinear perturbation theory. 
Introducing an artificial small parameter E, we seek asymptotic series expansions of 
the solutions to (41a-e) in the form 

03 - 
A - A m , -  

2-1 

The small parameter E can be regarded as a measure of the amplitude. We define 

(47 1 
e for definiteness as 

A -  
€ = ("l??G)n) 

where the angle brackets denote the inner product 
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Substituting (45)-(46) into (41u-e) and equating like powers of E in the resulting 
expressions, we obtain a sequence of linear problems. They are given, for j  = 1, 2, . . . , 
by 

L ~ ~ ) n + h , , r ~ ) ,  = R') (-$I < x < in ,  -in < y < +IT), (49a) 

where Ru), BY), B!jj), BY) and BY) are functions of A;), and T,I;)~ for i <j ,  and are 
given, for j up to 3, in the Appendix. In particular, 

Hence (49u-e) f o r j  = 1 correspond to the homogeneous linearized problem (42u-e), 
which has the solution ~/,,(x, y). Using the definition (47) of E ,  we find that 

r%A(x, Y) = ?Imn(X, Y). (50) 

For j = 2, 3 , .  . . , (49u-e) are inhomogeneous and therefore are solvable only if R(5) 
and BY), By),  BY) , BY) satisfy the following consistency condition (Stakgold 1979) : 

By analysing the system of equations (49u-e) and (51) in sequence o f j ,  one can 
calculate the coefficients in (45) and (46). The calculations for j  = 2 , 3  are elementary 
but lengthy. We therefore omit the details and summarize the results as follows. 

(i) j = 2 
The consistency condition (51) gives 

hgh = 0. 

With h g i  = 0, q$k(x, y) is found to be 

cos (a, 2) 
a2 sin ( f -  -' 

+ ( -  1 ) m  COB (2mx) 



where 
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a1 = [m2+(:)2n2]', 

(ii) j = 3 
The consistency condition gives 

Agk = - c  1 + c  2 f 2 -  2 C3J-3, 

where 

a alx 
cot -- 

dl 

( b  2 ) acot(+z,x) +- 
b 201, 

+ 

+ 
2a3 

c3 = T a  l + i  . 
3= ( 

While the valuea of c1 and cs are always positive, the value of c2 can be positive 
or negative depending on the aspect ratio b/a and the values of m and n. Therefore, 
€or a given geometry and a given interface boundary function f, A g L  may be positive, 
zero or negative, depending on the particular bifurcating solution under 
consideration. 

In the case of A g i  = 0, one needs to solve for ~ g i ( x , y )  and then carry out the 
calculations for j = 4 .  The analysis is similar in principle but conceivably more 
tedious. Hence we do not consider this pathological case and proceed to describe some 
qualitative features of the solution T in the neighbourhood of the bifurcation point 
Amn- 

To the order of the first non-vanishing terms we have 
- 7 N p mn € 9  

- 
&Am, N A g i e ?  

Thus in the (X, Il?jll)-plane a parabolic branch would emanate from X = Am,. The 
parabola points to the left if A g i  is negative; it points to the right if A g i  is positive. 
A typical bifurcation diagram is sketched in figure 2, where only one bifurcating 
solution is shown for clarity. 

4. Discussion 
In  $3  the nonlinear problem governed by (26)-(36) has been studied with the aid 

of bifurcation theory. The initial state is a basic solution that holds for all values of 
A. The bifurcation points at which non-trivial steady solutions join the basic solution 
have been located. Qualitative information about the shape of these bifurcating 

12 FLM 170 



348 M .  J .  Tan 

FIGURE 2. Bifurcation diagrams : (a )  supercritical bifurcation, A!& > 0 ; 
( b )  subcritical bifurcation, Ag\ < 0. 

solutions near their intersections with the basic solution has been obtained. The 
bifurcating solutions point to the left or to  the right, depending on the locations of 
the bifurcation points as well as on the hypothetical interface boundary function. 
Moreover, it can be shown with standard linear stability analysis that  the basic 
solution is stable to  infinitesimal disturbances for h in the range 0 < h < A,, and 
unstable outside this range, and that the right-pointing bifurcating solutions are 
stable whereas the left-pointing ones are unstable. 

We now turn to  the physical implications of the preceding analysis. I n  case of 
h > A,,, the physical system can no longer stay in the initial state. If all bifurcating 
solutions are left-pointing then the steady states that  can be obtained from 
bifurcation theory are all unstable. If there exist some right-pointing solutions then 
the physical system may evolve into one or more of the new steady states represented 
by those solutions. Pimbley’s (1976) work on a one-dimensional interface confined 
between two parallel walls shows that all bifurcating solutions are left-pointing, 
whereas the present work on a two-dimensional interface confined by four walls 
shows that, with similar boundary conditions, there can be right-pointing bifurcating 
solutions. The present results thus imply that the presence of rigid boundaries 
introduces a stabilizing effect on the shape of the interface. 

The contrast between the present results and those of Pimbley can be interpreted 
in the light of experimental observations. The most common arrangement for 
Rayleigh-Taylor experiments involves a rectangular container of liquid. Emmons 
et al. (1960) reported that there are liquid films at each wall of the rectangular 
container. The photographic sequences in Lewis’s (1950) paper show that the 
magnitude of the initial acceleration has virt,ually no influence upon the number of 
round-ended columns of the lighter fluid observed during stages (ii) and (iii). We infer 
from these observations that the problem of Rayleigh-Taylor instability is truly 
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three-dimensional and consequently that the development of the interface in general 
and the existence of new stable modes of equilibrium in particular are affected by 
the presence of all four walls. To the extent that the stable steady bifurcating 
solutions can be regarded as the shapes of the interface that become dominant at  
later stages, it is thus physically reasonable that the bifurcating solutions in the 
present three-dimensional approach can have a stability that is absent when the 
work is confined to two dimensions. It is worthwhile to note that Pimbley’s results 
cannot be recovered from the results presented in this paper by setting one of the 
two aspect ratios a or b equal to zero. This is due to the fact that two of the four 
boundary conditions (32)-(35) would become singular if a or b was set equal to zero, 
unless the interface boundary function f was chosen to be identically zero. 

To illustrate the main points of the present work, we shall consider a numerical 
example. We first note that for a given pair of fluids the value of the parameter A 
is controlled by varying the depth of the heavier fluid or the pressure applied to the 
lower interface, and thereby the acceleration. While it is not difficult to consider 
numerous experimental schemes that have various boundary geometries and initial 
conditions, we limit our discussions to the laboratory arrangement pertaining to film 
37 of Lewis (1950, figure lo), in which the aspect ratio of the test section is 5 and 
the depth of the heavier fluid is of the same order of magnitude as the width of the 
test section. The values of the pertinent parameters are 

p = 998 kg/m3, (T = 7.28 x N/m, g = 351 m/s2, 

B = 40.4 mm, A = 202 mm, C = 50.1 mm. 

It follows immediately that 

a = 0.248, b = 1.24, c = 121. 

Since A exceeds the first critical value 

A,, = 1.60, 

the initial state is unstable. One can proceed further if the specific form of the 
interface boundary function f is known. To fix ideas we consider the function 

f ( r )  = F[exp ( -r2)  - 11. (57) 

This even function automatically meets the hypothesized qualifications on the 
interface boundary functions (23a-c). Owing to the evenness off, the third term on 
the right-hand side of (55) vanishes. Thus 

A g  = -c ,+c2F2.  (58) 

We have determined that, among the non-trivial steady states, when subjected to 
infinitesimal disturbances, those with Agb < 0 are unstable whereas those with 
hgb > 0 are stable. It is clear from (58) that A g b  can be positive only if c2 > 0 and 
c,/c2 < F2. Therefore, if all c2 were negative then, without concerning ourselves with 
the physical meaning of F, we could infer that there existed no stable steady states. 
This is not the case. Table 1 gives all the (m,n)-pairs for which m and n are even, 
the eigenvalues A,, given by (43) are simple and less than A, and the values of c2 
given by (56b) are positive. It can be seen that there are 22 possibly stable steady 
states. 

To see how many and which of the 22 steady states are stable, it is necessary that 
the value of the constant F in (57) be specified. As our purpose is not to verify the 

12-2 
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m 

42 
38 
30 
14 
12 
36 
28 

8 
32 
26 
12 
24 

8 
6 

22 
8 
6 

18 
4 

10 
4 
2 

n A m n  C1 CZ 

2 114.64 3362.9 0.21661 
4 113.41 2525.1 0.09349 
6 110.7 1 1915.0 0.24433 
8 110.46 2838.6 0.89484 
8 107.26 2800.1 0.47632 
4 104.31 2079.7 0.54601 
6 103.57 1682.5 0.87094 
8 102.34 2752.1 1.3243 
2 69.13 1150.4 0.02946 
4 66.18 720.33 0.12492 
6 64.21 914.46 1.3915 
4 60.03 577.67 0.87183 
6 59.29 879.73 1.3131 
6 57.57 870.79 2.3739 
2 35.92 271.31 0.42234 
4 28.54 180.63 1.3820 
4 26.82 175.01 2.3602 
2 26.08 129.98 4.8009 
4 25.59 172.01 5.3777 
2 12.30 23.642 0.48541 
2 7.13 11.290 5.4470 
2 6.40 10.751 21.632 

TABLE 1. Calculated values of A,,, cl, cz and emn 

ern, 

0.46" 
0.35' 
0.65" 
1.02" 
0.75' 
0.93" 
1 .30' 
1.26' 
0.29' 
0.75" 
2.23" 
2.23" 
2.21' 
2.99' 
2.26' 
4.50' 
6.62' 

10.88" 
10.03" 
8.15' 

34.78' 
54.82' 

hypothesis that the particular interface boundary function given by (57) exists, but 
rather to show how the principles derived in a fairly general manner may be applied 
to particular problems, we assume in addition that F is given by 

F = cot e,, (59) 

where 8, is the contact angle between the heavier fluid and the rigid boundary. 
Substituting (59) in (57) and letting 

em, = A eot-l($ 

we obtain 
A$& = c, (Cot2 e, - Cot2  em,). (61) 

Table 1 also gives the values of emn for the 22 possibly stable steady states. For a 
given 6, the steady states with B,, > 0, are stable. For example, there are 5 stable 
steady states in the case 0, = 8". 

Qualitative features of the first two coefficients in the asymptotic series expansion 
of the bifurcating steady solutions corresponding to the bifurcation points 

A,, = 26.08 (m = 18,n = 2) 

and A,, = 12.30 (m = 10,n = 2) 

are shown in figures 3-6. In order to show the shapes of the interface better, the rigid 
boundaries are not plotted and in addition both the aspect ratio of the rigid 
boundaries and the amplitude of the interface are normalized. 

We note that the modified second coefficient 2ay$&/f2 as well as the first coefficient 
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FIQURE 3. Qualitative shape of v$!, for A,, = 26.08 (m = 18, n = 2). 

FIGURE 4. Qualitative shape of 2av(;4,/fi for A,, = 26.08 (m = 18, n = 2). 

FIQURE 5. Qualitative shape of v$)n for A,, = 12.30 (m = 10, n = 2). 

qg i  in (45) is independent of the specific form of the interface boundary function f. 
The extent to which the first-order term in (45) is modified by the second-order term 
depends not only on the magnitude of the small parameter 6 but also on the particular 
interface boundary function f .  Figures 7 and 8 show, for E = 0.1 and 0, = 8", the 
shape of the function T & L + E ~ ~ &  corresponding to A,, = 26.08, 12.30 respectively. 
One sees three rows of alternating elevations and depressions parallel to the 
(z, 2)-plane. Lewis's experiment shows that water was penetrated by four air columns 
at later stages (Lewis 1950, figure 10, profiles 3 and 4). It is rather difficult to imagine 
what the silhouettes would resemble when the interfaces shown in figures 7 and 8 are 
projected perpendicularly onto the (z, 2)-plane. The calculated shapes do, however, 
exhibit the interesting features of bubbles-and-spikes configuration. 

Before concluding our discussions, it is appropriate to make some remarks about 
the scope and limitations of the present work. We have set out to see if there exist 
non-trivial steady states that are more realistic than the initial steady states and to 
investigate if the presence of rigid boundaries affects the stability analysis. Using a 
specific class of interface boundary conditions, we have found that non-trivial steady 
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FIGURE 6. Qualitative shape of 2ar]g),/f, for A,, = 12.30 (m = 10, n = 2). 

FIGURE 7. Qualitative shape of vk',+qg)n for A,, = 26.08 (m = 18, n = 2), E = 0.1 and 8, = 8". 

FIGURE 8. Qualitative shape of v&),+er]$)n for A,, = 12.30 (m = 10, n = 2), B = 0.1 and 0, = 8". 

states do exist and that some of them can be stable to  infinitesimal disturbances. The 
compromise that allows us to  analyse the stability question this way has direct 
application to problems with more general interface boundary conditions. Moreover, 
we have considered only one aspect of the rigid-boundary effects, i.e. to what extent 
the presence of rigid boundary affect the stability analysis, and have left out of 
account other interesting aspects, particularly in what rigorous manner can the 
motion of the fluid in the vicinity of where the interface meets the rigid boundary 
be modelled. 
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